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ABSTRACT: Kinetic information is used to determine the optimal reaction conditions, to successfully scale up a reaction from the
laboratory to the pilot plant, and to improve process control. Obtaining accurate kinetics using conventional benchtop equipment
and techniques, however, requires numerous experiments and can be complicated by sluggish mixing and heat-transfer rates. To
improve the speed and efficiency in gathering reaction kinetics, we present an automated, silicon microreactor system that uses a
sequential experimentation framework driven by model-based optimization feedback for online reaction rate parameter
determination. The method, based on Information Theory and Bayesian Statistics, first selects the appropriate global reaction
rate expression. After determining the correct rate law, a D-optimal strategy precisely estimates the pre-exponential and activation
energy of the rate constant. The approaches are validated experimentally with a model system, the Diels-Alder reaction of isoprene
andmaleic anhydride inDMF. The benefits of quickly obtaining this information with an automatedmicroreactor system are further
demonstrated by successfully scaling the Diels-Alder reaction by a factor of 500 from a microreactor to a Corning flow reactor.

’ INTRODUCTION

Components of process development, such as reaction opti-
mization and establishing the appropriate process control
schemes, are greatly facilitated with the insight of the reaction
kinetics. Obtaining accurate reaction rate parameters in conven-
tional laboratory bench-scale equipment can be limited by several
factors. In the pharmaceutical and fine chemical industries where
reaction material can be minimal, insufficient data and improper
experimental designs do not provide adequate information for
reaction modeling. In situ analytical techniques, such as infrared
spectroscopy and calorimetry, can be incorporated in batch
reactors to increase the information content per experiment.
However, concentration and temperature gradients that exist in
these systems could provide misleading reaction results when
assuming an ideal batch reactor kinetic model. This error is
exacerbated for reactions that involve volatile reagents or reac-
tions performed under reflux because the concentrations in
solution and in the headspace are often unknown.1 These
limitations, however, are not a concern in microflow reactors,
‘microreactors’. In addition to improving the accuracy of kinetic
investigations, the enhanced heat- and mass-transfer rates in
microreactors enables one to explore syntheses that are not easily
studied in benchtop batch reactors, such as reactions that are
extremely fast,2 reactions that involve an unstable intermediate3

or a highly toxic compound,4 and reactions that show improved
operations at high temperature and pressures.5 Further efficiency
is gained by combining the continuous-flow operations of
microreactors with inline analysis and feedback control to
automate the experiments involved in the kinetic investigation.

The benefits of automated microreactor systems have
been demonstrated for a variety of reaction development
applications.6-11 We have previously described an automated
microreactor system capable of online, multiparameter reaction

optimization as well as the ability to transfer these results from
the micro- to the mesoscale.12,13 Black-box optimization algo-
rithms were implemented in these studies, enabling rapid reac-
tion optimization while requiring little knowledge of the reaction
system. These approaches are ideal when the goal of the
experiments is to evaluate a specific reaction metric, such as
maximizing the product yield, and then scaling up to a plug flow
reactor (PFR). While this information is a vital component of
process development, the application of the experimental results
may be limited if the objective should later change, say to
maximize product purity instead of yield, or if the process is
scaled up to a reactor other than a traditional PFR. To avoid these
restrictions, a more information-enriched approach could be
used to quickly and efficiently obtain intrinsic reaction knowl-
edge. In the present work, we demonstrate this concept by
implementing two model-based optimization feedback algo-
rithms within an automated microreactor system to ascertain
the kinetics of a Diels-Alder reaction and scale up the reaction
by a factor 500.

Reaction rate modeling includes two aspects—determining
the reaction rate form and estimating the parameters of the rate
constants (pre-exponential and activation energy). Common
procedures to extract this information are outlined in kinetics
and chemical engineering textbooks.14,15 First a global rate
expression, such as a common power law or complex rate form
is assumed. Numerous investigative experiments are performed,
and the data is collected and analyzed to determine the reaction
order and rate constant parameters. Great advances in high
throughput technology and parallel experimentation have sig-
nificantly decreased the amount of time required to acquire the
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data,16,17 but the amount of useful information gained per
experiment could be low. For example, when considering the
experimental variance and the sensitivity of a rate model to the
fitted parameters, different rate law models can appear to
adequately fit the data over a range of experimental conditions.
Therefore, the results from these investigative experiments
cannot be used to statistically distinguish the form or the order
of the reaction rate. Even when the rate law is known, these
experiments may not be useful for precisely estimating the pre-
exponential and the activation energy because the statistical
significance of these estimates is highly dependent upon the
experimental design. A superior approach to kinetic modeling is
to perform an experiment, analyze the results, use the data to
discriminate between various rate models and to estimate
kinetic parameters, and apply an appropriate algorithm to select
sequential experiments that will maximize the reaction informa-
tion. Although this sequential procedure would be slow and
laborious for batch experimentation, this approach is straight-
forward when using automated microreactor systems with
inline analysis.

A variety of sequential experimental designs have been
proposed to determine the global reaction rate model. From a
library of potential rate laws, these techniques continue to
perform experiments until one model has proven to best describe
the data. We implemented a framework developed by Box and
Hill that uses Information Theory and Bayesian Statistics to
discriminate among the most likely rate models that describe
experimental observations.18 A general description of this
technique follows, while a more detailed discussion of the
algorithm and the necessary equations are provided in the
Supporting Information. In this approach, each rate model has a
probability of correctly predicting experimental outcome as
defined by eq 1, where pi is the probability function of rate law
model i, yN is the Nth experimental observation (i.e., yield),
ŷN
i is the experimental outcome predicted by model i, σi

2 is the
variance of model i, σ2 is the experimental variance, and x is the
vector of experimental conditions (i.e., temperature, residence
time, concentrations).

piðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πðσ2ðxÞ þ σ2

i ðxÞÞ
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From Information Theory, the ability of a particular rate

expression to predict experimental observationsmore adequately
than all potential models is related to Shannon’s Entropy.
Initially, before any experimental data is obtained, there is no
information to determine which model describes the reaction
rate; therefore, Shannon’s Entropy is at a maximum value. After
obtaining adequate experimental data, one model has a higher
probability of describing the reaction rate over the other models,
corresponding to a less entropic state. The design by Box andHill
aims at selecting sequential experiments where the change in
Shannon’s Entropy is expected to be a maximum. This maximum
expected change in Shannon’s Entropy for any set of experi-
mental conditions, denoted asD(x), is given by eq 2, where i and j
are indices for the M potential rate models, and ΠN-1 is the
Bayesian prior probability. Sequential experimentation continues
until the Bayesian posterior probability, a metric used to assess a
model’s capabilities to describe the experimental observations,
surpasses a specified threshold.
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The method by Box and Hill was implemented in this work
because the Bayesian approach considers previous information
and parametric uncertainty to discriminate models in few experi-
ments. The ability to determine the correct rate law with a
minimal number of experiments is important for modeling
pharmaceutical and fine chemical reactions because the avail-
ability of reagents or catalysts can be limiting. However, sig-
nificant advances in the robustness and efficiency in other model
discrimination algorithms have been established over the
years.19-23 Selection of the most appropriate criterion for model
discrimination approaches has been a primary focus,24,25 as well
as extending these techniques to multiresponse models.26-29 To
demonstrate the usefulness of these algorithms, computer simu-
lations have been performed to demonstrate the improvements
to reaction modeling for a myriad of applications.30-36 Incor-
poration of these techniques with experimental data are less
reported, but applications include hydrogenation37 and crystal-
lization.38 The experimental designs in these applications were
developed before data collection. Imbedding a feedback mechan-
ism to perform experiments, collect data, and update the
sequential experimental design offers a great improvement to
the speed and efficiency for model discrimination applications.

After the appropriate rate law is determined, additional
experiments are performed to refine the rate constant para-
meters. Computing precise values for pre-exponential and acti-
vation energy is a challenging task because of the high correlation.
Additionally, the precision of these estimates is highly dependent
upon experimental design, indicating that some experimental
conditions provide more information content than others. Even
if ample experiments are performed in a kinetic investigation,
such as the scenario of running parallel experiments in 96-well
plates, the precision in the kinetic values will be poor if the
appropriate experimental conditions were not selected. The
relationship between the experimental design and the precision
in parameter estimates is apparent in the definition of the joint
confidence region, c, around the set of best fit parameters, θ*,39

ðθ- θ
�ÞTMf ðθ- θ

�Þ ¼ c ð3Þ

Mf ðθ, xÞ ¼ ∑
N - 1

i¼ 1

Dyðθ, xiÞ
Dθ

� �T
Σ-1 Dyðθ, xiÞ

Dθ

� � !
ð4Þ

where c is a constant given by the F-distribution and Σ-1 is the
experimental variance matrix.

As shown in eq 3, the volume of this joint confidence region is
proportional to a matrix, Mf, known as the Fisher Information
matrix, which is also the inverse of the parameter variance-
covariance matrix.21 Optimal experimental designs, such as A-,
D-, E-, and G-optimal designs, use various properties associated
with Mf to select experiments aimed at maximizing parameter
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estimate precision.21 Benefits of these designs have been demon-
strated for various process chemical fields, including chemical
kinetics,39 biokinetics,40 crystallization,41 and heat- and mass
transfer.42 Perhaps the most common approach, D-optimal, is
used in this work for kinetic parameter estimation. After per-
forming N-1 experiments, the D-optimal criterion selects the
Nth experiment by determining the conditions that minimize the
volume of the joint confidence region. Mathematically, these
conditions correspond to the experiment that maximizes the
determinant of the inverse of Mf (eq 5).

xN ¼ arg min jM-1
f j ð5Þ

By continuously updating the Fisher Information matrix with
each new experiment, and sequentially selecting experiments
according to eq 5, precise kinetic parameters can be calculated in
a minimal number of experiments.

The approaches discussed above were implemented in an
automated microreactor system and experimentally tested with
the Diels-Alder reaction of isoprene and maleic anhydride in
DMF (Scheme 1). This model reaction was selected because it is
straightforward, there are no observed side reactions at the
temperatures that were investigated, and the kinetics have been
well-established in previous studies.43,44 Therefore, the results
from this investigation are used to validate the operations of the
automated microreactor system as well as to demonstrate the
speed and the efficiency in using model-based approaches to
experimentally obtain kinetics. In the first part of this investiga-
tion, model discrimination techniques are applied to select the
rate law model that correctly describes the consumption of
isoprene (eq 6) from the list of possible rate laws given by
eqs 6-9. In these rate expressions, ri is the rate of isoprene
consumption as represented by rate expression i, ki is the
corresponding rate constant for expression i, and C1 and C2

denote the concentration of isoprene and maleic anhydride,
respectively. After selecting the most likely reaction model, the
automated system performed sequential experiments using a
D-optimal design to determine the rate constant parameters.

rI ¼ - kIC1C2 ð6Þ

rII ¼ - kIIC
2
1C2 ð7Þ

rIII ¼ - kIIIC1C
2
2 ð8Þ

rIV ¼ - kIV, f C1C2 þ kIV, r C3 ð9Þ

’EXPERIMENTAL METHODS

Microreactor System. A schematic of the automated system
used in these investigations is illustrated in Figure 1. Standard
photolithography and deep reactive ion etching techniques were
used to create a 120 μL reactor with 400 μm� 400 μm channel
dimensions. A spiral reactor design was used so that this system
could be used for future kinetics studies of reactions that involve
solids byproducts, such as palladium coupling reactions.45 A
compression packaging scheme was used to make fluidic con-
nections between the microreactor and macrofluidic instru-
ments. The residence time and the reagent concentrations
were adjusted by varying the flow rates of the syringe pumps.
A halo etch was incorporated in the microreactor design,
enabling the device to operate at two different temperature
zones. The temperature of the mixing and outlet zones was
controlled by pumping 20 �C water through the fluidic chuck
using a circulating bath, while the reaction zone was heated using
a thermoelectric module. By cooling the reaction to 20 �C, the
Diels-Alder reaction was effectively quenched. The reaction
stream was immediately diluted off-chip by a factor of 5, and an
interdigital micromixer was used to ensure rapid mixing before
inline HPLC analysis.3 Although inline spectroscopic techniques
such as Raman46 and ATR-IR47 have been incorporated with
microfluidic systems, an HPLC was integrated into the micro-
fluidic system because this analytical method provides multi-
component information and can be used to quantify a wider
range of reaction types than inline spectroscopy alone. An
isocratic HPLC method using 1:1 water/acetonitrile at
1.5 mL/min was used for analysis. Reaction model discrimina-
tion and parameter estimation was performed by monitoring the
outlet concentration of isoprene. This concentration was deter-
mined by using a response factor and the ratio of the isoprene
chromatogram at 247 nm to the chromatogram of the internal
standard, biphenyl, at 280 nm. Further details of the system
components and automation procedure are given in the Support-
ing Information.
Because the reaction results were not expected to be influ-

enced by the(1 �C tolerance in the temperature control or slight
oscillations in the syringe pump, the experimental variance was
assumed to be that of the HPLC measurement variance and
constant. A calibration curve for isoprene with repeat concentra-
tion points was created in an automated manner by using three
syringe pumps and the micromixer.12 By loading a concentrated
solution of isoprene in one syringe, biphenyl in the second, and
DMF in the third to act as diluent, a calibration curve for isoprene
and biphenyl was created over a range of concentrations. Con-
ducting these calibrations at various flow rates verified that there
was no correlation between HPLCmeasurement and the syringe
pump performance.

’KINETIC MODELING APPROACHES ON THE MICRO-
AND MESOSCALES

Online Model Discrimination. Using the model discrimina-
tion algorithm described above, the automated microreactor
system selected and performed experiments to determine the
correct rate law from the potential models given by eqs 6-9. The
manipulated variables during this investigation were residence
time and the reactor inlet concentrations of 1 and 2. To obtain an
initial estimate for the rate constants in each model, a preliminary
set of experiments were performed corresponding to a half-

Scheme 1. Diels-Alder reaction of isoprene with maleic
anhydride to form
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fractional factorial.48 Rate constants were estimated by minimiz-
ing the sum of squared errors. Computationally, this estimation
was achieved in Matlab using a nonlinear optimization solver
(fmincon) using the active-set algorithm for models rI-rIII and
the interior-point algorithm for model rIV. The model responses,
predictions, and sensitivities were estimated using a PFR model
for each rate model and a differential equation solver (ode15s).
As will be discussed later, a PFR model is appropriate over the
range of experimental conditions that were investigated. After
these four preliminary experiments, sequential experiments used
the previous rate constant solution as the initial guess.
Once the preliminary experiments were performed and the

best-fit rate constants and the model variances were computed,
the fifth and subsequent experiments were determined by finding
the conditions that maximized D of eq 2. Because the isoprene
outlet concentration was modeled by numerically solving the
differential rate equations, determining the global minimum ofD
using nonlinear optimization solvers was deemed too computa-
tionally expensive for the solution purpose and problem size.
Instead, the parameter space was discretized to grid points
defined by residence times between 1 and 10 min in intervals
of 0.5 min and 1 and 2 inlet concentrations between 0.5 and
2.0 M in increments of 0.25 M. Values of D were explicitly
enumerated, and the sequential experiments were determined by
locating the grid point with the maximum D value. Experimenta-
tion continued until the Bayesian posterior probability of rate
model surpassed 95%, or if it was determined that discrimination
could no longer be achieved.
Online Parameter Estimation. After determining the correct

rate law, the automatedmicroreactor systemwas used to estimate
the pre-exponential and the activation energy parameters of the
rate constant. Similar to the model discrimination investigation,
the isoprene reactor outlet concentration was modeled with PFR
kinetics. However, the laminar flow in microfluidics creates a

parabolic velocity profile that results in axial dispersion.49 The
degree of dispersion and the discrepancy between the PFR and
the laminar flow reactor kinetic models is dependent upon the
experimental conditions. To avoid the complications of model-
ing the reaction environment as a laminar flow reactor, computer
simulations were performed to determine a range of experimental
conditions where the effects of dispersion would be minimal and
where modeling the reaction with PFR kinetics would be satisfac-
tory. This approach and the simulated results are located in the
Supporting Information. The results indicated that an appropriate
design space for this kinetic study was the region bounded by
50-150 �C and residence times between 1 and 10 min.
Experiments for parameter estimation followed the D-optimal

design framework and used temperature and residence time as
variables. The design space was discretized to form a grid of
potential experiments, corresponding to temperatures between
50� and 150 �C in increments of 10 �C and residence times
between 1 and 10 min in intervals of 0.5 min. The reactor inlet
concentrations of 1 and 2 remained constant during these
experiments at 1.0 M. Four preliminary experiments correspond-
ing to a full factorial were performed to arrive at initial estimates
for the pre-exponential and activation energy. Parameter estima-
tion was performed byminimizing the sum of squared errors with
a nonlinear optimization solver in Matlab. The estimates were
substituted into the Fisher Information matrix (see eq 4) and
sequential experiments were selected by locating the experimen-
tal point that satisfied eq 5. Sequential experimentation contin-
ued until the activation energy estimate (Ea) and 95% confidence
intervals (ΔEa) converged according to eqs 10 and 11. This
confidence interval provides the upper and lower bounds on the
values for Ea in the joint confidence region described by eq 3.
Although developing termination criteria based on the actual
joint confidence region could provide more insight to the
parameter estimates, the 95% confidence intervals are

Figure 1. Sketch of automated microreactor system for online model discrimination and parameter estimation. The red-shaded zone of the
microreactor indicates the reaction zone, and the portion of the reactor maintained at 20 �C is denoted by the blue shaded area. The high thermal
conductivity of silicon and the small reactor channel width ensures that the reactionmixture is cooled before exiting the microreactor, thereby quenching
this Diels-Alder reaction.
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significantly faster to compute and therefore more attractive to
implement in an automated system.

jEaN - EaN - 1 j
EaN

e 5% ð10Þ

jΔEaN -ΔEaN - 1 j
ΔEaN

< 10% ð11Þ

Application of Kinetic Results to Scale Up. Difficulty in
scaling from the test tube to the pilot is due to the complexity of
the mixing and heat transfer in batch systems. Flow systems, on
the other hand, have been studied and characterized for over a
century due to their dominant presence in the petroleum and
commodity chemical industries. To demonstrate the benefits of
using kinetic information quickly obtained with automated
microreactor systems, we scaled up the Diels-Alder reaction
to a 60 mL Advanced Flow Reactor System (AFR) by Corning.
This scale up corresponds to a factor of 500. Our goal was to
predict the conversion of isoprene at several different conditions
in the AFR system.
A schematic of the AFR system for scale up is shown in

Figure 2. A high-pressure Isco pump and a Fuji Super Metering
pump were used to deliver maleic anhydride and isoprene,
respectively. Two plates were used to preheat the reagents to
the reaction temperature before entering the first reaction plate.
A static mixer in the first reactor plate was used to create a
uniform mixture. Previous reports indicate that mixing in these
devices is sufficient for flow rates above 15 mL/min for each
reagent.50 Reaction temperature was controlled by pumping
Kryo 55 oil with a Lauda circulating bath through the two 18-
channel heat exchangers that cap the reaction channel. Reaction
temperature was monitored by thermocouples that were inserted
into the heat exchanger fluid lines. An adjustable back pressure
regulator was added to the outlet to prevent solvent degassing

during reaction. Reaction samples were taken by collecting
approximately 20 mL of the reaction outlet stream into 80 mL
of DMF that was kept at 0 �C. This collection arrangement
effectively quenched the reaction. Samples were stored at 0 �C
until analyzed by HPLC.
Successful scale up of flow systems uses the reaction

kinetics, the heat-transfer rates, and the residence time distribu-
tion (RTD) to solve the material and energy balances of the
reaction. This approach is especially important for exothermic
reactions, such as this Diels-Alder example, which has a large
heat of reaction, ΔHrxn ≈ -145 kJ/mol.44 Although experi-
mental measurements of the heat transfer and the RTD of the
entire AFR system provides the most accurate information for
scale up, excellent approximations for these features are obtained
through simple characterization experiments and general corre-
lations. A dispersion model, E(t) as given by eq 12, was used to
estimate the residence time distribution and the dispersion
coefficient, D*, was experimentally measured by recording the
tracer curve for a pulse injection through a single AFR
plate reactor.15 In this equation, L is the length of the reactor
and U is the average fluid velocity. The heat-transfer rate, Q, was
estimated by calculating the overall heat-transfer coefficient for
an AFR plate, UHX, which has been previously reported for
several flow conditions.51 Over the range of conditions investi-
gated in this work, the values of the overall heat transfer
coefficient ranged from 180 to 360 W/m2K. The heat-transfer
rate is used to solve the energy balance of the reaction system and
to estimate the temperature rise caused by the exothermic
reaction. Further details of the modeling and simplifying assump-
tions are given in the Supporting Information. This heat transfer
information is used to solve the coupled mass (eq 14) and energy
(eq 15) balances, where PHX and ACS is the perimeter and the
cross-sectional area of the heat transfer area, respectively. The
isoprene concentration exiting the AFR system is calculated by
incorporating the solution from these equations into the RTD

Figure 2. Illustration of Corning AFR system used to scale up reaction by a factor of 500. AFR modules are denoted by Roman numerals I-IX. AFR
modules I and II are used to heat the individual reagent streams to the desired reaction temperature. Reagent streams combine and are mixed via a static
mixer in module III. The reaction proceeds in modules III-IX, and samples are quenched and collected at the system outlet.
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model (eq 16).

EðtÞ ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffi
4πD�tp exp -

ðL-UtÞ2
4D�t

 !
ð12Þ

Q ¼ UHXAHXðTrxn - ToilÞ ð13Þ

dC1

dt
¼ - kC2

1 ð14Þ

FCP
dT
dt

¼ UHXPHX
ACS

ðT - ToilÞ- kC2
1ΔHrxn ð15Þ

C1 ¼
Z ¥

t¼ 0
C1ðtÞEðtÞdt ð16Þ

’RESULTS AND DISCUSSION

The first component of this kinetic investigation involved
determining the correct rate law expression that described the
consumption of isoprene. Results from this model discrimination
investigation are listed in Table 1. Initially, each reaction model
was assumed to be equally as likely to be the correct rate law;
therefore, the prior probability was 0.25 for each model. After
performing the preliminary experiments (exp 1-4), rate con-
stants for each model were fitted and are listed in Table 2. The
kinetic values for each rate model were used to select the fifth
experiment by finding the conditions that maximized the value of
D (eq 2). These conditions corresponded to a residence time of 1
min and 0.5 M reactor inlet concentrations for both 1 and 2. As
previously mentioned, each reaction model has a probability
distribution that describes the likely experimental outcome at
these conditions (eq 1). These distributions for the reactor outlet

concentration of isoprene for the fifth experiment are shown in
Figure 3, along with the experimental outcome.

Upon inspection of Figure 3, one will notice that the prob-
ability distribution for model rIV appears to be missing. This
apparent omission is related to the best-fit estimates that were
computed for model rIV from the first four experiments. The
nonzero value for the reverse rate constant, kIV,r, provides a better
fit to the initial data set than that of a model that does not include
a reverse reaction. Although the combination of rate constant
estimates for model rIV resulted in a better fit to the first four
experiments, the model prediction capabilities are quite sensitive
to the value of the reverse rate constant. This type of sensitivity is
common when a parameter estimate has no physical significance
to a reaction model, but rather serves to minimize the residual
error between the experimental data and reaction model esti-
mates. Consequently, this high sensitivity translated into a high
model variance for rate rIV, and created a broad probability
density function that cannot be seen on the same scale with the
other rate law models in Figure 3.

Perhaps of greater interest is the product of these model
probability functions with the corresponding Bayesian prior
probabilities (piΠi,N-1). This weighted probability function
illustrates the ability of an experimental outcome to successfully
discriminate the correct reaction model from other potential
models. Discrimination is achieved when the experimental out-
come falls within a single model weighted probability function.
Because the prior probabilities for each model going into the fifth
experiment were equal, this comparison can be made by simply
looking at the individual model probabilities (Figure 3). Because
the outcome of the fifth experiment falls within the prediction of
several models, sequential experiments must be performed for
discrimination.

The outcome for experiment 5 was used to calculate the
posterior probability of each model. The posterior probability
became the prior probability for the next experiment, and was
used in the calculation of D to determine the conditions of
experiment (exp) 6, corresponding to 1 min residence, 2.0 and
1.5 M reactor inlet concentrations of 1 and 2, respectively. The
weighted probability density function for the outlet isoprene
concentration of exp 6 and the observed outcome are shown in
Figure 4. As this figure indicates, the outcome from exp 6 was
predicted only by reaction model rI, implying that this model is
the correct rate law. Mathematically, the posterior probabilities
denoted that rI was the correct rate law (see Table 1), and the
experimental procedure was terminated. This prediction is in
agreement with the known rate law for this reaction.44 It is also
interesting to note that reverse rate constant for model rIV was
zero when data from all six experiments were used in the

Table 1. Experimental results, algorithm parameterD (see eq 2), and posterior probabilities associated withmodel discrimination
experiments

. posterior probability

exp residence time (min) 1 (M) 2 (M) conversion D ΠI ΠII ΠIII ΠIV

1 6.0 1.0 1.0 89 - 0.250 0.250 0.250 0.250

2 5.0 1.5 1.0 68 - - - - -
3 6.0 1.0 1.5 95 - - - - -
4 5.0 1.5 1.5 87 - - - - -
5 1.0 0.5 0.5 37 429000 0.470 0.356 0.173 <0.001

6 1.0 2.0 1.25 40 7.9 0.999 <0.001 <0.001 <0.001

Table 2. Rate constant estimates for each rate model con-
sidered in the kinetic discrimination investigation

model parameter

estimate

(see eqs 6-9)

after 4

experiments

after 5

experiments

after 6

experiments

kI � 102 (M-1 s-1) 1.69 1.74 1.34

kII � 102 (M-1 s-1) 6.63 5.95 1.95

kIII � 102 (M-1 s-1) 8.88 6.90 3.15

kIV,f � 102 (M-1 s-1) 13.4 2.08 1.34

kIV,r � 103 (s-1) 2.56 0.21 0.00
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nonlinear regression. This observation illustrates the caution that
should be exercised when fitting parameters with few
data points but also highlights the ability of this discrimination
approach to avoid reaction models that contain unnecessary
parameters.

Using the correct rate expression rI from the model discrimi-
nation investigation, the microreactor system selected and
performed experiments to estimate the kinetic parameters.
Progression of the parameter estimation and the 95% confidence
intervals for the sequential experiments are shown in Table 3.
Using a D-optimal approach and the termination criteria given by
eqs 10 and 11, precise estimates were achieved after six experi-
ments. Observed values in this work are in good agreement with

Hoffmann et al., who previously reported the activation energy
for this Diels-Alder reaction as 58.5 ( 2 kJ/mol.44

These confidence intervals provide the upper and lower
bounds for the parameter estimates, but of more importance is
the joint confidence region (Figure 5), which captures the
correlation between the parameters. Additionally, this informa-
tion can be used to select the appropriate combinations of the
pre-exponential factors and activation energies to determine the
actual range for rate constant. For example, using the final best fit
pre-exponential and activation energy, the rate constant at
100 �C is (2.71 ( 0.15) � 10-2 M-1 s-1. As an additional
point of comparison, using the kinetic parameters reported by
Hoffmann and co-workers provides a rate constant value of 2.6�

Figure 4. Weighted probability distributions (piΠi) of potential rate laws used for model discrimination calculations involved in selecting conditions for
experiment 6. Experimental result is denoted by the arrow.

Figure 3. Probability distributions (pi) of potential rate laws used for model discrimination calculations involved in selecting conditions for experiment
5. Experimental result is denoted by the arrow.
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10-2 M-1 s-1 at 100 �C, which falls within the range described
by this joint confidence region.

The kinetic information obtained from the automated micro-
reactor system was used with the RTD and heat transfer
calculations to model the Diels-Alder reaction in the Corning
AFR. For inlet reagent concentrations of 1.0 M each, model
predictions at several experimental conditions were made by
simultaneously solving the mass (eq 14) and energy (eq 15)
balances and incorporating the solutions of these balances into
the RTDmodel (eq 16) to determine the expected conversion of
isoprene in the AFR reactor. Experimental results are compared
to the scale up model predictions in Table 4, and are in excellent
agreement with one another. The predicted conversion values
are consistently higher than the observed experimental

conversion. This trend is attributed to the underestimated value
of the overall heat transfer coefficient (see Supporting In-
formation), causing the exotherm predicted by the scale up
model, which had a maximum value of þ5 �C, to be larger than
what would be observed experimentally. The strong influence of
the heat transfer predictions underscores the need for having a
well characterized system, such as the developed automated
microreactor system, when determining reaction kinetics and
predicting scale up performance.

’CONCLUSIONS

An automated microreactor system combined with model-
based optimization feedback has been presented as a technique
to quickly model reactions while requiring aminimum number of
experiments. Using less than five grams of each starting reagent in
a Diels-Alder reaction, the microreactor system selected and
performed 12 experiments to determine the appropriate rate law
expression and to precisely estimate the pre-exponential and
activation energy of the rate constant. This kinetic information
was incorporated into a roadmap for continuous flow scale up,
and validated by scaling the Diels-Alder reaction by a factor of
500 in a Corning AFR system. The experimental observations for
this scale up were in good agreement with model predictions.

Table 3. Experimental for parameter estimation investigation with associated 95% confidence intervalsa

kinetic parameters

exp residence time (min) temp (�C) conversion |Mf
-1| � 1030 A � 106 M-1 s-1 Ea kJ/mol

1 5.0 90 82 - -
2 5.0 110 93 - -
3 6.0 90 86 - -
4 6.0 110 94 70.0 1.9( 10.5 56.1( 17.3

5 1.0 50 50 4.7 1.4( 1.0 55.3( 2.0

6 1.0 120 81 3.3 2.1 ( 1.3 56.3 ( 1.9
aThe metric |Mf

-1| (see eq 4) is provided for experiments 4-6 to provide some insight to the convergence of the algorithm.

Figure 5. Joint confidence region for kinetic parameters determined by automated microreactor system.

Table 4. Predicted and experimental conversion for scale up
investigation

conversion

entry samples time (min) temp (�C) experimental predicted

1 2 1.5 110 78.1( 0.4 80.5

2 3 2.0 100 82.6( 0.1 84.7

3 3 2.5 110 85.2( 1.0 87.5

4 2 1.0 126 83.5( 3.1 84.8
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Current investigations with automated microfluidic systems
involve obtaining the kinetics for syntheses that involve multiple
reactions (i.e., parallel and serial reactions) that are more
pharmaceutically relevant. In addition to the fast scale up of
reactions, the intrinsic kinetic information gained from the
microreactor system can be incorporated with advanced control
schemes to ensure product quality during changes in production
schedules. Modeling the different reactions rates using the tools
and techniques demonstrated in this work will lead to fast and
accurate reaction optimization results for complex chemical
systems, such as those that involve multiple reactive pathways.
Kinetic information for individual reactions will be extended to
the design of optimal multistep processes. Furthermore, ad-
vances in in situ monitoring in microreactors will enable auto-
mated microreactor systems with model-based feedback to
complement chemical computational techniques for reaction
mechanism generation.

’ASSOCIATED CONTENT

bS Supporting Information. Further details regarding the
automated microreactor system components, operations, and
experimental procedure, model discrimination approach, and
numerical modeling of the scale up process. This material is
available free of charge via the Internet at http://pubs.acs.org.
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